Improving Radar Absorbing Capability of Polystyrene Nanocomposites: Preparation and Investigation of Microwave Absorbing Properties
Authors
Abstract:
Microwave absorbing materials are usually designed to solve protection against electromagnetic interference in wireless communication systems and high frequency circuit mechanisms. In this research polystyrene (PS) nanocomposites containing various nano-fillers were successfully synthesized. The novelty of this work is comparing of three various nanostructures: non-metallic conductive graphene oxide, magnetic Fe3O4 and semi-conductor zinc oxide were used as additive. The effect of different fillers loading and homogenizer speed on the reflection loss (RL) amount and electromagnetic wave absorption was investigated. In order to investigate particle size and morphology of the nanostructures the scanning electron microscopy (SEM) was used. The frequency range of 5-8 GHz was employed in the investigation of electromagnetic wave absorption properties of nanocomposites using a vector network analyzer and eventually their absorption properties were analyzed and compared. The results indicate that graphene oxide has substantial effect on absorption in compare with the other nanocomposite samples. Increase of homogenizer speed led to a dispersion improvement of nanostructures and absorption. Therefore, the broadening of the microwave absorption band-width is attributed to the suitable dispersion of nanostructures in polymeric matrix.
similar resources
Radar Absorbing Nanocomposites Based MultiLayered Graphene Platelets/Epoxy
Graphene nanostructures were synthesized by Hummer method. 1, 3, 5 and 7 wt% of graphene nanostructures were suspended in certain amount of acetone on a mechanical stirrer and stirred then added to epoxy resin. After 4 hours, solution and Graphene platelets (GPs) were prepared. Nanostructures were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM ), Fourier transform i...
full textMicrowave-Absorbing Properties of Rice Starch
In the food industry, research into the characteristics of microwave-heated materials has focused on dielectric properties. However, the lack of studies on microwave-absorbing properties has hindered the application of microwave technology. The aim of the present study was to investigate the microwave-absorbing properties of rice starch. It should be noted that this was the first time that the ...
full textradar absorbing nanocomposites based multilayered graphene platelets/epoxy
graphene nanostructures were synthesized by hummer method. 1, 3, 5 and 7 wt% of graphene nanostructures were suspended in certain amount of acetone on a mechanical stirrer and stirred then added to epoxy resin. after 4 hours, solution and graphene platelets (gps) were prepared. nanostructures were characterized by x-ray diffraction (xrd), scanning electron microscopy (sem ), fourier transform i...
full textSimple Method for the Preparation of Fe3O4/MWCNT Nanohybrid as Radar Absorbing Material (RAM)
We have successfully prepared Fe3O4/MWCNT nanohybrid with a very simple and economical method. Multi-Walled Carbon NanoTubes (MWCNT) encapsulated with Fe3O4 nanoparticles were synthesized via pyrolyzing of ferrocene. The sample was characterized with XRD, TEM and Vibrating Sample Magnetometer (VSM). Also, Permeability (µ) and Permittivity (ε) were...
full textFlexible Radar Absorbing Nanocomposites Based on Co-ferrite/Nano Carbon/polymeric epoxy resin
In this research work cobalt-ferrite (CoFe2O4) nanoparticles were synthesized by a simple, general sol-gel auto-combustion method. For this study, electromagnetic (EM) wave absorbing coatings with different weight fractions of nano-carbon and CoFe2O4 (which, arises from both dielectric and magnetic contributions) and polymeric epoxy resin were prepared and their characteristics were fully inves...
full textEffect of carbon black content on the microwave absorbing properties of CB/epoxy composites
To prevent serious electromagnetic interference, a single-layer and double layer wave-absorbing coating employing complex absorbents composed of carbon black with epoxy resin as matrix was prepared. The morphologies of carbon black /epoxy composites were characterized by scanning electron microscope and atomic force microscope, respectively. The carbon black particles exhibit obvious polyarom...
full textMy Resources
Journal title
volume 10 issue 2
pages 392- 403
publication date 2020-04-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023